Definitizable Extensions of Positive Symmetric Operators in a Krein Space

نویسنده

  • Branko Curgus
چکیده

The Friedrichs extension and the Krein extension of a positive operator in a Krein space are characterized in terms of their spectral functions in a Krein space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE OPERATOR (sgnx)¿ IS SIMILAR TO A SELFADJOINT OPERATOR IN L2(R)

Krein space operator-theoretic methods are used to prove that the operator (sgnx)-j-j is similar to a selfadjoint operator in the Hubert space ¿2(R) • Let L be a symmetric ordinary differential expression. Spectral properties of the operators associated with the weighted eigenvalue problem Lu = Xwu have been studied extensively. When w is positive, this problem leads to a selfadjoint problem in...

متن کامل

The Operator ( sgn x ) d 2 / dx 2 is Similar to a Selfadjoint Operator in L 2 ( R )

Krein space operator-theoretic methods are used to prove that the operator (sgn x) d is similar to a selfadjoint operator in the Hilbert space L2 (R) . Let L be a symmetric ordinary differential expression. Spectral properties of the operators associated with the weighted eigenvalue problem Lu = )wu have been studied extensively. When w is positive, this problem leads to a selfadjoint problem i...

متن کامل

On the Spectral Theory of Singular Indefinite Sturm-liouville Operators

We consider a singular Sturm-Liouville differential expression with an indefinite weight function and we show that the corresponding self-adjoint differential operator in a Krein space locally has the same spectral properties as a definitizable operator.

متن کامل

On domains of powers of linear operators and finite rank perturbations

Let S and T be linear operators in a linear space such that S ⊂ T . In this note an estimate for the codimension of domSn in domT n in terms of the codimension of domS in domT is obtained. An immediate consequence is that for any polynomial p the operator p(S) is a finite-dimensional restriction of the operator p(T ) whenever S is a finite-dimensional restriction of T . The general results are ...

متن کامل

Quasi-uniformly Positive Operators in Krein Space

BRANKO CURGUS and BRANKO NAJMAN Deenitizable operators in Krein spaces have spectral properties similar to those of selfadjoint operators in Hilbert spaces. A suucient condition for deenitizability of a selfadjoint operator A with a nonempty resolvent set (A) in a Krein space (H; j ]) is the niteness of the number of negative squares of the form Axjy] (see 10, p. 11]). In this note we consider ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005